lunes, 30 de mayo de 2016

ANÁLISIS DE ALTERNATIVAS DE INVERSIÓN

UNIDAD 2
ANÁLISIS DE ALTERNATIVAS DE INVERSIÓN
2.1 MÉTODO DEL VALOR PRESENTE.
Valor Presente es el valor actual de un Capital que no es inmediatamente exigible es (por oposición al valor nominal) la suma que, colocada a Interés Compuesto hasta su vencimiento, se convertiría en una cantidad igual a aquél en la época de pago. Comúnmente se conoce como el valor del Dinero en Función del Tiempo. El valor presente de una suma que se recibirá en una fecha futura es aquel Capital que a una tasa dada alcanzará en el período de Tiempo, contado hasta la fecha de su recepción, un monto igual a la suma a recibirse en la fecha convenida. El Valor actual neto también conocido valor actualizado neto ( en inglés Net present value), cuyo acrónimo es VAN (en inglés NPV), es un procedimiento que permite calcular el valor presente de un determinado número de flujos de caja futuros, originados por una inversión. La metodología consiste en descontar al momento actual (es decir, actualizar mediante una tasa) todos los flujos de caja futuros del proyecto. A este valor se le resta la inversión inicial, de tal modo que el valor obtenido es el valor actual neto del proyecto.
El método de valor presente es uno de los criterios económicos más ampliamente utilizados en la evaluación de proyectos de inversión. Consiste en determinar la equivalencia en el tiempo 0 de los flujos de efectivo futuros que genera un proyecto y comparar esta equivalencia con el desembolso inicial. Cuando dicha equivalencia es mayor que el desembolso inicial, entonces, es recomendable que el proyecto sea aceptado.
El Valor actual neto también conocido valor actualizado neto ( en inglés Net present value), cuyo acrónimo es VAN (en inglés NPV), es un procedimiento que permite calcular el valor presente de un determinado número de flujos de caja futuros, originados por una inversión. La metodología consiste en descontar al momento actual (es decir, actualizar mediante una tasa) todos los flujos decajafuturos del proyecto. A este valor se le resta la inversión inicial, de tal modo que el valor obtenido es el valor actual neto del proyecto.
El método de valor presente es uno de los criterios económicos más ampliamente utilizados en la evaluación de proyectos de inversión. Consiste en determinar la equivalencia en el tiempo 0 de los flujos de efectivo futuros que genera un proyecto y comparar esta equivalencia con el desembolso inicial. Cuando dicha equivalencia es mayor que el desembolso inicial, entonces, es recomendable que el proyecto sea aceptado.
La fórmula que nos permite calcular el Valor Actual Neto es:
Monografias.com




2.1.2 COMPARACIÓN DE ALTERNATIVAS CON VIDAS ÚTILES IGUALES.
El método del valor presente para la evaluación de alternativas es muy popular porque futuros gastos o ingresos son transformados en dinero equivalente hoy. Es decir, todos los flujos de caja futuros asociados con una alternativa son convertidos a valores de dinero presente. En esta forma, es muy fácil, a un para una persona no familiarizada con el análisis económico, ver la ventaja económica sobre otra u otras. La comparación de alternativas que tienen vidas útiles iguales por el método del valor presente es directa. Si ambas alternativas se utilizan en idénticas condiciones para el mismo periodo de tiempo, se denominan alternativas de igual servicio. Frecuentemente el flujo de caja comprende solo desembolsos. Entonces la alternativa con el más bajo valor presente debe seleccionarse. Por otra parte, cuando deben considerarse desembolsos como negativos, en este caso la alternativa seleccionada debe de ser la que tenga el más alto valor presente. Aunque no importe la convención adoptada en el flujo de caja, es importante considerar la asignación del signo consiste a cada elemento y la interpretación del resultado ira de acuerdo con esa convención. Este método se emplea para comparar proyectos con igual vida útil (duración); y su comparación es directa. Si las alternativas se utilizaran en idénticas condiciones, se denominan alternativas de igual servicio y los ingresos anuales tendrán el mismo valor numérico.
El proceso del método del Valor Presente Neto es el mismo que se usó para encontrar el valor de P, es decir la cantidad en el presente.

2.1.2 COMPARACIÓN DE ALTERNATIVAS CON VIDAS ÚTILES DIFERENTES.
El VP de las alternativas deberá compararse sobre el mismo número de años. La comparación del valor presente implica calcular el valor presente equivalente para flujos de efectivo futuros en cada alternativa. Al no comparar igual servicio siempre favorecerá la alternativa de vida más corta, aun si no es la más económica, ya que se involucran periodos más breves de costos. El requerimiento de igual servicio puede satisfacerse por cualquiera de los siguientes dos enfoques: Compare las alternativas durante un periodo de tiempo igual al mínimo común múltiplo (MCM) de sus vidas. Compare las alternativas usando un periodo de estudio de n cantidad de años, no necesariamente tome en consideración las vidas útiles de las alternativas; enfoque del horizonte de planeación.
El MCM hace que los flujos de efectivo para todas las alternativas se extiendan para el mismo periodo de tiempo.







Las suposiciones del análisis de VP con alternativas de vida diferentes son las siguientes:

1.   El servicio ofrecido por las alternativas será necesario para el MCM de años.
2.   La alternativa seleccionada se repetirá durante cada ciclo de vida del MCM exactamente en la misma forma.
3.   Los estimados del flujo de efectivo serán los mismos en cada ciclo de vida.


La tercera suposición es válida sólo cuando se espera que los flujos de efectivo varíen exactamente de acuerdo con el índice de inflación, el cual se aplica al periodo de tiempo del MCM. Si se espera que los flujos de efectivo varíen por cualquier otro índice, entonces el análisis de VP deberá conducirse utilizando un valor constante en dólares, que considere la inflación. Un análisis de valor presente sobre el MCM requiere que el valor de salvamente estimado se incluya encada ciclo de vida. Para la aproximación por periodo de estudio, se elige un horizonte de tiempo, y sólo aquellos flujos de efectivo que ocurran en ese periodo de tiempo se consideran relevantes, se ignoran todos los flujos de efectivo ocurridos más allá de periodo de estudio. El horizonte de tiempo escogido deberá ser relativamente corto.

2.1.3 COSTO CAPITALIZADO.
El costo capitalizado (CC) se refiere al valor presente de un proyecto cuya vida útil se supone durará para siempre. Algunos proyectos de obras públicas tales como diques, sistemas de irrigación y ferrocarriles se encuentran en esta categoría. Además, las dotaciones permanentes de universidades o de organizaciones de caridad se evalúan utilizando métodos de costo capitalizado. En general, el procedimiento seguido al calcular el costo capitalizado de una secuencia infinita de flujos de efectivo es el siguiente:
·         Trace un diagrama de flujo de efectivo que muestre todos los costos y/o ingresos no recurrentes (una vez) y por lo menos dos ciclos de todos los costos y entradas recurrentes (periódicas). Encuentre el valor presente de todas las cantidades no recurrentes.
·         Encuentre el valor anual uniforme equivalente (VA) durante un ciclo de vida de todas las cantidades recurrentes y agregue esto a todas las demás cantidades uniformes que ocurren en los años 1 hasta el infinito, lo cual genera un valor anual uniforme equivalente total (VA).
·         Divida el VA obtenido en el paso 3 mediante la tasa de interés “i” para lograr el costo capitalizado.


2.1.4. COMPARACION DE ALTERNATIVAS SEGÚN EL COSTO CAPITALIZADO.
Para comparar dos o más alternativas con base al costo capitalizado se utiliza el procedimiento del CCT para cada alternativa. Ya que el costo capitalizado representa el valor presente total de financiamiento y mantenimiento, dada una alternativa de vida infinita, las alternativas se compararán para el mismo número de años (es decir, infinito). La alternativa con el menor CC representará la más económica, a continuación, se dará un ejemplo de esto.
2.2 METODO DEL VALOR ANUAL.
La aceptación o rechazo de un proyecto en el cual una empresa piense en invertir, depende de la utilidad que este brinde en el futuro frente a los ingresos y a las tasas de interés con las que se evalué. En artículos anteriores se han tratado los fundamentos teóricos de las matemáticas financieras y su aplicación en la evaluación de proyectos organizacionales, teniendo claros estos principios se puede llevar a cabo una valoración más profunda del mismo y compararlo con otros utilizando las herramientas que sean comunes a los proyectos que van a analizarse y que a su vez pueda medir las ventajas o desventajas de estos. Alternativa Simple. Esta debe aplicarse cuando se evalúa y se tiene que decidir si un proyecto individual es o no conveniente. Las principales herramientas y metodologías que se utilizan para medir la bondad de un proyecto son:
·         CAUE: Costo Anual Uniforme Equivalente.
·         VPN: Valor Presente Neto.
·         VPNI: Valor Presente Neto Incremento.
·         TIR: Tasa Interna de Retorno.
·         TIRI: Tasa Interna de Retorno Incremental.
·         B/C: Relación Beneficio Costo.
·         PR: Período de Recuperación.
·         CC: Costo Capitalizado.
Todos y cada uno de estos instrumentos de análisis matemático financiero debe conducir a tomar idénticas decisiones económicas, lo única diferencia que se presenta es la metodología por la cual se llega al valor final, por ello es sumamente importante tener las bases matemáticas muy claras para su aplicación.
En ocasiones utilizando una metodología se toma una decisión; pero si se utiliza otra y la decisión es contradictoria, es porque no se ha hecho una correcta utilización de los índices.


En la aplicación de todas las metodologías se deben tener en cuenta los siguientes factores que dan aplicación a su estructura funcional:
·         C: Costo inicial o Inversión inicial.
·         K: Vida útil en años.
·         S: Valor de salvamento.
·         CAO: Costo anual de operación.
·         CAM: Costo anual de mantenimiento.
·         IA: Ingresos anuales.
2.2.1 COMPARACION DE ALTERNATIVAS CON VIDAS UTILES DIFERENTES.
Alternativa Simple

Esta debe aplicarse cuando se evalúa y se tiene que decidir si un proyecto individual es o no conveniente Las principales herramientas y metodologías que se utilizan para medir la bondad de un proyecto son:

·         CAUE: Costo Anual Uniforme Equivalente.
·         VPN: Valor Presente Neto.
·         VPNI: Valor Presente Neto Incremento.
·         TIR: Tasa Interna de Retorno.
·         TIRI: Tasa Interna de Retorno Incremental.
·         B/C: Relación Beneficio Costo.
·         PR: Período de Recuperación.
·         CC: Costo Capitalizado.
Todos y cada uno de estos instrumentos de análisis matemático financiero debe conducir a tomar idénticas decisiones económicas, lo única diferencia que se presenta es la metodología por la cual se llega al valor final, por ello es sumamente importante tener las bases matemáticas muy claras para su aplicación.

En ocasiones utilizando una metodología se toma una decisión; pero si se utiliza otra y la decisión es contradictoria, es porque no se ha hecho una correcta utilización de los índices.

En la aplicación de todas las metodologías se deben tener en cuenta los siguientes factores que dan aplicación a su estructura funcional:
·         C: Costo inicial o Inversión inicial.
·         K: Vida útil en años.
·         S: Valor de salvamento.
·         CAO: Costo anual de operación.
·         CAM: Costo anual de mantenimiento.
·         IA: Ingresos anuales.


2.2.2 METODO DEL VALOR PRESENTE DE SALVAMENTO.

El método de valor presente también convierte las inversiones y valores de salvamento en un VA. El valor presente de salvamento se retira del costo de inversión inicial y la diferencia resultante es anualizada con el factor A/P durante de la vida del activo. La ecuación general es:
VA ={- P + VS (P/F,i,n)}(A/P,i,n)
Los pasos para determinar el VA del activo competo son:
1.    Calcular el valor presente del valor de salvamento mediante el factor P/F.
2.    Combinar el valor obtenido en el paso 1 con el costo de inversión P.
3.    Anualizar la diferencia resultante durante de la vida del activo utilizando el factor A/P.
4.    Combinar cualquier valor anual uniforme con el valor de el paso 3.
5.    Convertir cualquier otro flujo de efectivo en un valor anual uniforme equivalente y combinar con el valor obtenido en el paso 4.

2.2.3 METEDO DE RECUPERACION DE CAPITAL.
El periodo de recuperación de capital es el periodo en el cual la empresa recupera la inversión realizada en el proyecto. Este método es uno de los más utilizados para evaluar y medir la liquidez de un proyecto de inversión.
Muchas empresas desean que las inversiones que realizan sean recuperadas no más allá de un cierto número de años. El PRC se define como el primer período en el cual el flujo de caja acumulado se hace positivo.
2.2.4 COMPARACION DE ALTERNATIVAS POR CAUE.
El método del CAUE consiste en convertir todos los ingresos y egresos, en una serie uniforme de pagos. Obviamente, si el CAUE es positivo, es porque los ingresos son mayores que los egresos y por lo tanto, el proyecto puede realizarse; pero, si el CAUE es negativo, es porque los ingresos son menores que los egresos y en consecuencia el proyecto debe ser rechazado.

A continuación, se presenta la aplicación de la metodología del Costo Anual Uniforme Equivalente en la evaluación de proyectos de inversión.
Casi siempre hay más posibilidades de aceptar un proyecto cuando la evaluación se efectúa a una tasa de interés baja, que a una mayor



2.3 METODO DE LA TASA INTERNA DE RETORNO.
La tasa interna de retorno - TIR -, es la tasa que iguala el valor presente neto a cero.  La tasa interna de retorno también es conocida como la tasa de rentabilidad producto de la reinversión de los flujos netos de efectivo dentro de la operación propia del negocio y se expresa en porcentaje.  También es conocida como Tasa crítica de rentabilidad cuando se compara con la tasa mínima de rendimiento requerida (tasa de descuento) para un proyecto de inversión específico.
La evaluación de los proyectos de inversión cuando se hace con base en la Tasa Interna de Retorno, toman como referencia la tasa de descuento.  Si la Tasa Interna de Retorno es mayor que la tasa de descuento, el proyecto se debe aceptar pues estima un rendimiento mayor al mínimo requerido, siempre y cuando se reinviertan los flujos netos de efectivo.  Por el contrario, si la Tasa Interna de Retorno es menor que la tasa de descuento, el proyecto se debe rechazar pues estima un rendimiento menor al mínimo requerido.
2.3.1 CALCULO DE LA TASA INTERNA DE RETORNO PARA UN PROYECTO UNICO.
Si el dinero se obtiene en préstamo, la tasa de interés se aplica al saldo NO pagado (insoluto) de manera que la cantidad y el interés total del préstamo se pagan en su totalidad con el último pago del préstamo. Desde la perspectiva del prestamista o inversionista, cuando el dinero se presta o se invierte, hay un saldo no recuperado en cada periodo de tiempo. La tasa de interés es el retorno sobre este saldo no recuperado, de manera que la cantidad total y el interés se recuperan en forma exacta con el último pago o entrada. La tasa de retorno define estas dos situaciones.
Tasa de retorno (TR) es la tasa de interés pagada sobre el saldo no pagado de dinero obtenido en préstamo, o la tasa de interés ganada sobre el saldo no recuperado de una inversión, de manera que el pago o entrada final iguala exactamente a cero el saldo con el interés considerado.

La tasa de retorno está expresada como un porcentaje por periodo, por ejemplo, i = 10% anual. Ésta se expresa como un porcentaje positivo; es decir, no se considera el hecho de que el interés pagado en un préstamo sea en realidad una tasa de retorno negativa desde la perspectiva del prestamista.
El valor numérico de i puede moverse en un rango entre -100% hasta infinito, es decir, -100% < i < 03. En términos de una inversión, un retorno de i = -100% significa que se ha perdido la cantidad completa.

2.3.2 ANALISIS INCREMENTAL.
Generalmente, valor presente neto y tasa interna de rendimiento llevan a tomar la misma decisión de inversión, sin embargo, en algunas ocasiones y con proyectos mutuamente excluyentes, pueden llevar a tomar decisiones contrarias con lo cual es conveniente utilizar el análisis incremental.

Para ejemplificar, supóngase que una empresa de servicios informáticos está planteándose adquirir una nueva computadora. Considera dos alternativas: adquirir el modelo H que supone una inversión de $ 30,000 o el modelo S cuyo costo es de $ 40,000.

El decidirse por el modelo S supone pagos estimados anuales de $ 15,000 durante 5 años, frente a unos ingresos de $ 15,000 en el primer año y 30,000 los otros cuatro. El modelo H, por su parte, implica desembolsos durante cinco años de 10,000 e ingresos de 15,000 en el primer año y 20,000 los cuatro restantes. En ambos casos se supone que la tasa de descuento es del 7% y la vida útil de las máquinas de cinco años.

2.4 ANALISIS BENEFICIO/COSTO.
Es una técnica usada para evaluar programas o proyectos de Inversión, que consiste en comparar Costos con los beneficios asociados a la realización del proyecto. Un proyecto estará Bien aspectado si los beneficios superan los Costos. Los beneficios pueden ser de tipo monetario o social, directo o indirecto.
En otra acepción es un instrumento para formular y evaluar proyectos, trata acerca de los Costos y beneficios de un plan, cuantificando ambos en términos monetarios y sociales, directos o indirectos, con el propósito de que los beneficios sean mayores a los Costos. Los métodos que se usan con mayor frecuencia en este tipo de análisis son: tasa de Rentabilidad interna, Valor neto y actual, y análisis Costo-Eficiencia.
La diferencia esencial entre el análisis de Costo - Beneficio y los métodos ordinarios de evaluación de inversiones que emplean las empresas, es el énfasis en los Costos y beneficios sociales. El objetivo consiste en identificar y medir las pérdidas y las Ganancia en el bienestar económico que recibe la Sociedad en su conjunto.
2.5 ANALISIS DE SENSIBILIDAD.
En el momento de tomar decisiones sobre la herramienta financiera en la que debemos invertir nuestros ahorros, es necesario conocer algunos métodos para obtener el grado de riesgo que representa esa inversión. Existe una forma de análisis de uso frecuente en la administración financiera llamada Sensibilidad, que permite visualizar de forma inmediata las ventajas y desventajas económicas de un proyecto.
Este método se puede aplicar también a inversiones que no sean productos de instituciones financieras, por lo que también es recomendable para los casos en que un familiar o amigo nos ofrezca invertir en algún negocio o proyecto que nos redituaría dividendos en el futuro.
El análisis de sensibilidad de un proyecto de inversión es una de las herramientas más sencillas de aplicar y que nos puede proporcionar la información básica para tomar una decisión acorde al grado de riesgo que decidamos asumir.
Análisis de Sensibilidad
La base para aplicar este método es identificar los posibles escenarios del proyecto de inversión, los cuales se clasifican en los siguientes:
Pesimista:
Es el peor panorama de la inversión, es decir, es el resultado en caso del fracaso total del proyecto.
Probable:
Éste sería el resultado más probable que supondríamos en el análisis de la inversión, debe ser objetivo y basado en la mayor información posible.
Optimista:
Siempre existe la posibilidad de lograr más de lo que proyectamos, el escenario optimista normalmente es el que se presenta para motivar a los inversionistas a correr el riesgo.
Así podremos darnos cuenta que en dos inversiones donde estaríamos dispuestos a invertir una misma cantidad, el grado de riesgo y las utilidades se pueden comportar de manera muy diferente, por lo que debemos analizarlas por su nivel de incertidumbre, pero también por la posible ganancia que representan:
Ejemplo:
Inversión A Inversión B
Inversión Inicial $ 100,000 $ 100,000
Posibles ganancias en el periodo de Inversión
Resultado Posible
Pesimista 2,500 0.00
Probable 50,000 50,000
Optimista 60,000 100,000
Resultados incluyendo la inversión:
Pesimista (-97,500) (-100,000)
Probable 150,000 150,000
Optimista 160,000 200,000
Los estimados de resultados se deben fijar por medio de la investigación de cada proyecto, es decir, si se trata de una sociedad de inversión podremos analizar el histórico de esa herramienta financiera en particular, en el caso de un proyecto de negocio, debemos conocer la proyección financiera del mismo y las bases en que determinaron dicha proyección.
Como se puede observar en el ejemplo, el grado de mayor riesgo lo presenta el proyecto B, pero también la oportunidad de obtener la mayor utilidad. Normalmente así se comportan las inversiones, a mayor riesgo mayores utilidades posibles.
Después de conocer el sistema de análisis de Sensibilidad de un proyecto, lo siguiente es que analices y tomes decisiones en base a tus expectativas de riesgo. Recomendamos asesoría de un profesional antes de invertir tu dinero, en conjunto podrán considerar éste y otros métodos para tomar la decisión que más se adapte a tus requerimientos.


Programacion en servicios

5.-Programación en servicios.


Una importante diferencia entre las manufacturas y los servicios, que influye en la programación, es que en las operaciones de servicios no es posible crear inventarios para amortiguar la demanda en situaciones inciertas. Una segunda diferencia es que la demanda suele ser menos previsible en las operaciones de servicios.

La capacidad, que frecuentemente consiste en el número de empleados, es un  factor crucial para los proveedores de servicios.

Programación de la demanda de los clientes.

Una forma de administrar la capacidad consiste en programar a los clientes en términos de tiempos de llegada y periodos definidos para el tiempo de servicio. Con este enfoque, la capacidad se mantiene fija y la demanda se nivela para proporcionar un servicio puntual y aprovechar mejor la capacidad. Para esto se utiliza comúnmente tres métodos:

*Cita
Es un sistema a base de citas se asignan fechas específicas para brindar servicio a los clientes. Las ventajas de este método son la puntualidad en el servicio al cliente y una elevada utilización de los recursos de servicio.

Sin embargo, si se intenta proveer servicios puntuales, debe tenerse cuidado con la duración de las citas a las necesidades individuales del cliente.

* Reservaciones.

Se emplean cuando el cliente ocupa o utiliza realmente instalaciones relacionadas con el servicio. La principal ventaja  de los sistemas de reservaciones es el tiempo de entrega que proporcionan y que permite a los gerentes a planear el uso eficiente de los recursos. Las reservaciones requieren a menudo alguna forma de pago inicial, para reducir el problema en caso de que el cliente decida no presentarse.

  • Acumulación de pedidos.

Una forma menos precisa de programar el servicio a los clientes consiste en permitir la acumulación de pedidos; esto significa que los clientes nunca saben exactamente cuándo van a empezar a recibir el servicio. Ellos presentan su solicitud de servicio a un empleado, éste recibe el pedido y lo añade a la fila de espera de los pedidos que ya están en el sistema. Se  pueden emplear diversas reglas de prioridad para determinar qué pedido deberá atenderse a continuación. La regla habitual es que “a quien llega primero, se atiende primero”, pero si algún pedido implica la rectificación  de un pedido anterior, es posible que se le conceda una prioridad mas alta.

Programación de la fuerza de trabajo.

Otra forma de administrar la capacidad por medio de un sistema de programación consiste en especificar los periodos de trabajo y de descanso para cada empleado durante cierto periodo de tiempo. Este método se utiliza cuando los clientes exigen una respuesta rápida y la demanda total puede ser pronosticada con un grado bastante aceptable de precisión. En estas circunstancias, la capacidad disponible se ajusta a fin de satisfacer las cargas de trabajo esperadas para el sistema de servicios. En los programas para la fuerza de trabajo el plan personal se traduce en programas específicos  de actividades para cada empleado. El hecho de determinar qué días laborales trabajará cada empleado no hace que el plan de personal funcione bien. Para eso los requisitos diarios de la fuerza de trabajo, expresados en el plan de personal en términos agregados, deberán satisfacerse. La capacidad de la fuerza de trabajo disponible cada día tendrá que ser igual o mayor que los requisitos diarios.

Restricciones

Son los recursos proporcionados por el plan de personal y los requisitos impuestos sobre el sistema operativo. Sin embargo, es posible aplicar otras restricciones e incluso algunas consideraciones de carácter legar y otras relacionadas con el comportamiento. Las restricciones de  esta índole limitan la flexibilidad de la gerencia para desarrollar los programad de actividades para si fuerza de trabajo.

Las restricciones impuestas por las necesidades psicologicas  de los trabajadores complican todavía mas la programación. Algunas de esas restricciones han sido incorporadas a los convenios laborales.

Programa de rotación.

En el cual los empleados trabajan por rotación en una serie de días u horas laborales. De esta manera, en un periodo  de tiempo determinado, todas las personas tienen la misma oportunidad de descansar los días feriados y los fines de semana y de trabajar ya sea durante el día, por la tarde o en la noche.

Programa fijo.

Que cada empleado trabaje los mismos días y horas todas las semanas.



Desarrollo de un programa para la fuerza de trabajo.

Este método reduce la cantidad de la capacidad de holgura asignada a los días cuyos requisitos son bajos y obliga a programar primero los días que tienen requisitos altos.


BALANCEO DE LÍNEAS

El balance de líneas es la asignación del trabajo a estaciones integradas a una línea, de modo que se alcance la tasa de producción deseada con el menos número posible de estaciones de trabajo.

Normalmente se asigna un trabajador a cada estación. Las líneas que alcanzan el ritmo deseado de producción con el menor número de trabajadores es considerada como la mas eficiente. El balance de línea debe realizarse durante  la preparación inicial de la misma, cuando una línea se balancea para modificar su tasa de producción por hora, o cuando se introducen cambios en el producto o el proceso.

El objetivo es tener estaciones de trabajo con cargas de trabajo bien balanceadas. El analista separa las tareas en elementos de trabajo, es decir, en las unidades de trabajo más pequeñas que puedan realizarse en forma independiente. A continuación, calcula la norma de trabajo que corresponde a cada elemento, e identifica los predecesores inmediatos, que deben llevarse a cabo antes de comenzar el siguiente.

Tasa de producción deseada.

El objetivo del balance de línea es acoplar la tasa de producción al plan de producción. El acoplamiento de la producción y la demanda asegura entregas a tiempo y previene la acumulación de inventario indeseable. Deben abstenerse de rebalancear con mucha frecuencia, porque cada vez que se hace es necesario rediseñar los puestos de muchos trabajadores, perjudicando así temporalmente la productividad.

El tiempo de ciclo.

Es el tiempo máximo permitido para trabajar en la elaboración de una unidad en cada estación. Si el tiempo requerido para trabajar con los elementos de una estación es mayor que el tiempo del ciclo de la línea, entonces seguramente habrá cuellos de botella en la estación, impidiendo que la línea alcance la tasa de producción deseada.

El problema de diseño para encontrar formas para igualar los tiempos de trabajo en todas las estaciones se denomina problema de balanceo de línea. Deben existir ciertas condiciones para que la producción en línea sea práctica:

1) Cantidad. El volumen o cantidad de producción debe ser suficiente  para cubrir el costo de la preparación de la línea. Esto depende del ritmo  de producción y de la duración que tendrá la tarea.
2) Equilibrio. Los tiempos necesarios para cada operación  en línea deben ser aproximadamente
iguales.
3) Continuidad. Deben tomarse precauciones para asegurar un aprovisionamiento continuo del material, piezas, subensambles, etc., y la prevención de fallas de equipo.

Los casos típicos de balanceo de línea de producción son:
1) Conocidos los tiempos de las operaciones, determinar el número de operarios necesarios para cada operación.
2) Conocido el tiempo de ciclo, minimizar el número de estaciones de trabajo.
3) Conocido el número de estaciones de trabajo, asignar elementos de trabajo a la misma.

BALANCEO DE LÍNEA TRADICIONAL

El problema de balanceo de línea tradicional consiste en la asignación oportuna de las tareas a las estaciones de trabajo de manera que se optimicen los recursos disponibles.

Cada tarea tiene una duración requerida para ser completada y asociada a ellas tiene unas restricciones de precedencia. Las restricciones de precedencia se refieren a que cada tarea puede ser asignada solo después de que todas sus tareas predecesoras han sido asignadas a estaciones previas. El
conjunto de tareas asignadas a una estación constituye la carga de trabajo de la estación. El tiempo acumulado de las tareas es llamado tiempo de estación.

 Un balanceo de línea es factible solo si el tiempo de las estaciones no excede el tiempo de ciclo de la línea. En aquellos casos donde el tiempo de la estación resulte ser más pequeño que el tiempo de ciclo, la estación tiene un tiempo de ocio. Este es el resultado de la diferencia entre el tiempo de ciclo y el tiempo de la estación, como se puede observar en la siguiente ecuación.
TOk = TC - T (Sk), .k
donde;
K = Número de la estación
TOk= Tiempo de ocio de la estación k
TC=Tiempo de ciclo de la línea
T (Sk)= Carga de trabajo (unidades de tiempo) asignada a la estación k
Sk= Conjunto de tareas asignadas a la estación k
T (Sk) = TC Restricción en la carga de trabajo






MÉTODO HEURÍSTICO

La palabra heurístico proviene de la palabra griega “Heuriskein” que significa descubrir. Los heurísticos son un conjunto de reglas que tratan de descubrir una o más soluciones específicas de un problema determinado. Estas reglas están basadas en razonamientos deductivos de personas, debido a su intuición, conocimiento y experiencia. Por lo general los heurísticos se construyen para darle apoyo al algoritmo en los problemas que tienen dimensiones grandes. En siguiente tabla se muestra una comparación entre los heurísticos y algoritmos. Dos métodos heurísticos son proporcionados por Kilbridge & Wester y Helgeson & Birnie.
Método De Kibridge & Wester

·         Image166Considera restricciones de precedencia entre las actividades, buscando minimizar el número de estaciones para un tiempo de ciclo dado.
·         El método se ilustra con el ejemplo siguiente. 
·         Definir el tiempo de ciclo, c, requerido para satisfacer la demanda e iniciar la asignación de tareas a estaciones respetando las precedencias y buscando minimizar el ocio en cada estación.
·         Considerando un ciclo de 16, se estima que el mínimo número de estaciones sería de 48/16 = 3.
·         Observando el tiempo total de I y analizando las tareas de II, podemos ver que la tarea 4 pudiera reasignarse a I.
Image167


Image168




·         Al reasignarse la tarea 4 a la estación I se cumple el tiempo de ciclo.
·         Repetimos el proceso con la estación II. Podemos observar que la tarea 5, que se ubica en la estación III, se puede reasignar a la estación II.
·         La reasignación satisface el tiempo de ciclo.
·         Repetimos el proceso y observamos que el resto de las tareas pueden reasignarse a la estación III.
Image169



·         La línea se balanceó optimizando la cantidad de estaciones y con un ocio  de cero.
Image170
Método De Helgeson & Birnie


pycdel32•Consiste en estimar el peso posicional de cada tarea como la suma de su tiempo más los de aquellas que la siguen








pycdel34pycdel33•Las tareas se asignan a las estaciones de acuerdo al peso posicional, cuidando no rebasar el tiempo de ciclo y violar las precedencias.
•La primera estación se formaría entonces de las tareas 1, 2 y 4 con pesos de 45,
37 y 34. El tiempo total es de 16 y no se violan precedencias.


•La siguiente asignación corresponde a las tareas 3 y 5 con pesos de 25 y 19.
•El tiempo total en la estación II es de 16.









La última asignación incluye las tareas 6, 7, 8 y 9, con pesos de 16, 9, 5 y 3 respectivamente.
•El tiempo total de la estación III es de 16.